Shop Windows to the Universe

We now offer the Cool It! card game in our Science Store. Cool It! is the new card game from UCS that teaches kids about the choices we have when it comes to climate change.
The image shows the changes in light output over time of the first-discovered pulsating carbon white dwarf star.
Click on image for full size
Courtesy of K. Williams/ T. Jones/ McDonald Obs

Astronomers Discover New Type of Pulsating White Dwarf Star
News story originally written on May 1, 2008

University of Texas at Austin astronomers Michael H. Montgomery and Kurtis A. Williams, along with graduate student Steven DeGennaro, have predicted and confirmed the existence of a new type of variable star, with the help of the 2.1-meter Otto Struve Telescope at McDonald Observatory. The discovery is announced in today's issue of Astrophysical Journal Letters .

This research was funded by the National Science Foundation and the Delaware Asteroseismic Research Center.

Called a "pulsating carbon white dwarf," this is the first new class of variable white dwarf star discovered in more than 25 years. Because the overwhelming majority of stars in the universe--including the sun--will end their lives as white dwarfs, studying the pulsations (i.e., variations in light output) of these newly discovered examples gives astronomers a window on an important end point in the lives of most stars.

A white dwarf star is the leftover remnant of a sun-like star that has burned all of the nuclear fuel in its core. It is extremely dense, packing half to 1.5 times the sun's mass into a volume about the size of Earth. Until recently, there were thought to be two main types of white dwarfs: those with an outer layer of hydrogen (about 80 percent of white dwarfs), and those with an outer layer of helium, whose hydrogen shells have somehow been stripped away (the other 20 percent).

Last year, University of Arizona astronomers Patrick Dufour and James Liebert discovered a third type of white dwarf star. For reasons that are not understood, these "hot carbon white dwarfs" have had both their hydrogen and helium shells stripped off, leaving their carbon layer exposed. Astronomers suspect that these could be among the most massive white dwarfs of all, the remnants of stars slightly too small to end their lives in a supernova explosion.

After these new carbon white dwarfs were announced, Montgomery calculated that pulsations in these stars were possible. Pulsating stars are of interest to astronomers because the changes in their light output can reveal what goes on in their interiors--similar to the way geologists study seismic waves from earthquakes to understand what goes on in Earth's interior. In fact, this type of star-study is called "asteroseismology."

So, Montgomery and Williams' team began a systematic study of carbon white dwarfs with the Struve Telescope at McDonald Observatory, looking for pulsators. DeGennaro discovered that a star about 800 light-years away in the constellation Ursa Major, called SDSS J142625.71+575218.3, fits the bill. Its light intensity varies regularly by nearly two percent about every eight minutes.

"The discovery that one of these stars is pulsating is remarkably important," said NSF astronomer Michael Briley. "This will allow us to probe the white dwarf's interior, which in turn should help us solve the riddle of where the carbon white dwarfs come from and what happens to their hydrogen and helium."

The star lies about ten degrees east northeast of Mizar, the middle star in the handle of the Big Dipper. This white dwarf has about the same mass as our Sun, but its diameter is smaller than Earth's. The star has a temperature of 35,000 degrees Fahrenheit (19,500 C), and is only 1/600th as bright as the Sun.

None of the other stars in their sample were found to pulsate. Given the masses and temperatures of the stars in their sample, SDSS J142625.71+575218.3 is the only one expected to pulsate, based on Montgomery's calculations.

The astronomers speculate that the pulsations are caused by changes in the star's carbon outer envelope as the star cools down from its formation as a hot white dwarf. The ionized carbon atoms in the star's outer layers return to a neutral state, triggering the pulsations.

There is a chance that the star's variations might have another cause. Further study is needed, the astronomers say. Either way, studying these stars will shed light on the unknown process that strips away their surface layers of hydrogen and helium to lay bare their carbon interiors.

Text above is courtesy of the National Science Foundation

Last modified July 7, 2008 by Becca Hatheway.

Shop Windows to the Universe Science Store!

Learn about Earth and space science, and have fun while doing it! The games section of our online store includes a climate change card game and the Traveling Nitrogen game!

Windows to the Universe Community



You might also be interested in:

Cool It! Game

Check out our online store - minerals, fossils, books, activities, jewelry, and household items!...more

White Dwarfs

White Dwarfs are the remnants of stars that were massive enough to stay alive using nuclear fusion in their cores, but not massive enough to blow apart in a Type II supernova. When stars like our own sun...more

What Is an Earthquake?

The expression "on solid ground" is often used to describe something as stable. But sometimes the solid ground underfoot is not stable. It moves as Earth's tectonic plates move. Sometimes it moves gradually....more

Magnitude - a measure of brightness

Astronomers use the term "magnitude" to describe the brightness of an object. The magnitude scale for stars was invented by the ancient Greeks, possibly by Hipparchus around 150 B.C. The Greeks grouped...more

Triggers of Volcanic Eruptions in Oregon's Mount Hood Investigated

A new study has found that a mixing of two different types of magma is the key to the historic eruptions of Mount Hood, Oregon's tallest mountain, and that eruptions often happen in a relatively short...more

Oldest Earth Mantle Reservoir Discovered

Researchers have found a primitive Earth mantle reservoir on Baffin Island in the Canadian Arctic. Geologist Matthew Jackson and his colleagues from a multi-institution collaboration report the finding--the...more

Its Not Your Fault A Typical Fault, Geologically Speaking, That Is

Some geologic faults that appear strong and stable, slip and slide like weak faults. Now an international team of researchers has laboratory evidence showing why some faults that 'should not' slip are...more

Extended Period of Lower Solar Activity Linked to Changes in Sun's Conveyor Belt

A new analysis of the unusually long solar cycle that ended in 2008 suggests that one reason for the long cycle could be a stretching of the sun's conveyor belt, a current of plasma that circulates between...more

Windows to the Universe, a project of the National Earth Science Teachers Association, is sponsored in part is sponsored in part through grants from federal agencies (NASA and NOAA), and partnerships with affiliated organizations, including the American Geophysical Union, the Howard Hughes Medical Institute, the Earth System Information Partnership, the American Meteorological Society, the National Center for Science Education, and TERC. The American Geophysical Union and the American Geosciences Institute are Windows to the Universe Founding Partners. NESTA welcomes new Institutional Affiliates in support of our ongoing programs, as well as collaborations on new projects. Contact NESTA for more information. NASA ESIP NCSE HHMI AGU AGI AMS NOAA