Shop Windows to the Universe

Please help support Windows to the Universe, and our activities to help Earth and space science teachers, with a tax-exempt donation today!

Black Carbon

Little particles in the atmosphere called aerosols may be small but they have the ability to change climate. These tiny particles are a natural part of the atmosphere, coming from erupting volcanoes, sea salt, and wildfires. Since the start of the Industrial Revolution, additional aerosols have been added to the atmosphere as fossil fuels have been burned. Black carbon is the term that has been given to the product of the incomplete combustion of fossil fuels, biofuel, and biomass. It is commonly known as soot.

Black carbon stays in the atmosphere for several days to weeks and then settles out onto the ground. Sources of black carbon are open biomass burning (forests and savannah burning that can start from natural causes like lightning or human-induced causes like slash and burn methods for clearing land), biofuel burning, diesel engines, industrial processes and residential coal burning. Black carbon is produced around the world and the type of soot emissions vary by region.

Black carbon contributes to global warming in two ways. First, when soot enters the atmosphere, it absorbs sunlight and generates heat, warming the air. Secondly, when soot is deposited on snow and ice, it changes the albedo of that surface, absorbing sunlight and generating heat. This warming causes snow and ice to melt, and darker colored Earth surface and ocean are exposed and less solar energy is reflected out to space causing even more warming. This is known as the ice-albedo feedback.

Just what is albedo? The amount of energy reflected by a surface is called albedo. Albedo is measured on a scale from zero to one (or sometimes as a percent).

  • Very dark colors have an albedo close to zero (or close to 0%).
  • Very light colors have an albedo close to one (or close to 100%).

Because much of the land surface and oceans on Earth are dark in color, they have a lower albedo and absorb a large amount of the solar energy that gets to them, reflecting only a small fraction of the Sun's energy. Forests have low albedo, near 0.15. Snow and ice, on the other hand, are very light in color. They have very high albedo, as high as 0.8 or 0.9, so they reflect most of the solar energy that gets to them, absorbing very little.

The amount and type of aerosols in the atmosphere has an impact on the albedo of our planet. Earth's planetary albedo is about 0.31. That means that about a third of the solar radiation that gets to Earth is reflected out to space and about two thirds is absorbed. Aerosols like black carbon have a low albedo and reflect very little solar energy. This air pollution is having an impact on Earth's climate.

Scientists Ramanathan and Carmichael estimate that black carbon emissions are the second largest contributor to global warming, after carbon dioxide emissions. Reducing black carbon emissions is one of the fastest strategies for slowing global warming. Luckily, many policies have been put in place to reduce the production of black carbon around the world, and the technology necessary to lessen black carbon emissions already exists. To improve further, we need to better regulate the industrial processes that produce black carbon, and individuals need affordable and available technology to be able to make shifts from practices like biofuel cooking and residential coal combustion that are still used in much of the world today. The importance of black carbon's role in global warming has come to the forefront of the minds of many concerned citizens and exciting steps are already being taken to address issues like making cleaner burning cookstoves available in developing nations. These reductions of black carbon around the world will not only aid in reducing global warming, but will improve human health and environmental aesthetics.

Last modified May 13, 2011 by Jennifer Bergman.

Shop Windows to the Universe Science Store!

The Fall 2009 issue of The Earth Scientist, which includes articles on student research into building design for earthquakes and a classroom lab on the composition of the Earth’s ancient atmosphere, is available in our online store.

Windows to the Universe Community



You might also be interested in:

Cool It! Game

Check out our online store - minerals, fossils, books, activities, jewelry, and household items!...more

Aerosols: Tiny Particulates in the Air

Aerosols, also called particulates, are tiny bits of solid or liquid suspended in the air. Some aerosols are so small that they are made only of a few molecules – so small that they are invisible because...more

What is Climate?

Climate in your place on the globe is called regional climate. It is the average weather pattern in a place over more than thirty years, including the variations in seasons. To describe the regional climate...more

Global Warming: Scientists Say Earth Is Heating Up

Earth’s climate is warming. During the 20th Century Earth’s average temperature rose 0.6° Celsius (1.1°F). Scientists are finding that the change in temperature has been causing other aspects of our planet...more

Ice-Albedo Feedback: How Melting Ice Causes More Ice to Melt

Arctic sea ice is covered with snow all winter. Bright white, the snow-covered ice has a high albedo so it absorbs very little of the solar energy that gets to it. And during the Arctic winter, very little...more


This picture shows a part of the Earth surface as seen from the International Space Station high above the Earth. A perspective like this reminds us that there are lots of different things that cover the...more

The Cryosphere

The cryosphere includes the parts of the Earth system where water is in its frozen (solid) form. This includes snow, sea ice, icebergs, ice shelves, glaciers, ice sheets, and permafrost soils. Approximately...more

Air Pollution

What do smog, acid rain, carbon monoxide, fossil fuel exhausts, and tropospheric ozone have in common? They are all examples of air pollution. Air pollution is not new. As far back as the 13 th century,...more

Windows to the Universe, a project of the National Earth Science Teachers Association, is sponsored in part is sponsored in part through grants from federal agencies (NASA and NOAA), and partnerships with affiliated organizations, including the American Geophysical Union, the Howard Hughes Medical Institute, the Earth System Information Partnership, the American Meteorological Society, the National Center for Science Education, and TERC. The American Geophysical Union and the American Geosciences Institute are Windows to the Universe Founding Partners. NESTA welcomes new Institutional Affiliates in support of our ongoing programs, as well as collaborations on new projects. Contact NESTA for more information. NASA ESIP NCSE HHMI AGU AGI AMS NOAA