Suspended clay particles, eroded from the Cascade Mountains of Washington State, give Lake Diablo its brilliant color. The active volcanoes of the Cascades result from the subduction of the Juan de Fuca plate beneath North America.
Click on image for full size
Courtesy of Nicole LaDue

Earth Science Literacy - Big Idea 4

Earth is continuously changing.

Big Idea 4.1
Earth’s geosphere changes through geological, hydrological, physical, chemical, and biological processes that are explained by universal laws. These changes can be small or large, continuous or sporadic, and gradual or catastrophic.

Big Idea 4.2
Earth, like other planets, is still cooling, though radioactive decay continuously generates internal heat. This heat flows through and out of Earth’s interior largely through convection, but also through conduction and radiation. The flow of Earth’s heat is like its lifeblood, driving its internal motions.

Big Idea 4.3
Earth’s interior is in constant motion through the process of convection, with important consequences for the surface. Convection in the iron-rich liquid outer core, along with Earth’s rotation around its axis, generates Earth’s magnetic field. By deflecting solar wind around the planet, the magnetic field prevents the solar wind from stripping away Earth’s atmosphere. Convection in the solid mantle drives the many processes of plate tectonics, including the formation and movements of the continents and oceanic crust.

Big Idea 4.4
Earth’s tectonic plates consist of the rocky crust and uppermost mantle, and move slowly with respect to one another. New oceanic plate continuously forms at mid-ocean ridges and other spreading centers, sinking back into the mantle at ocean trenches. Tectonic plates move steadily at rates of up to 10 centimeters per year.

Big Idea 4.5
Many active geologic processes occur at plate boundaries. Plate interactions change the shapes, sizes, and positions of continents and ocean basins, the locations of mountain ranges and basins, the patterns of ocean circulation and climate, the locations of earthquakes and volcanoes, and the distribution of resources and living organisms.

Big Idea 4.6
Earth materials take many different forms as they cycle through the geosphere. Rocks form from the cooling of magma, the accumulation and consolidation of sediments, and the alteration of older rocks by heat, pressure, and fluids. These three processes form igneous, sedimentary, and metamorphic rocks.

Big Idea 4.7
Landscapes result from the dynamic interplay between processes that form and uplift new crust and processes that destroy and depress the crust.
This interplay is affected by gravity, density differences, plate tectonics, climate, water, the actions of living organisms, and the resistance of Earth materials to weathering and erosion.

Big Idea 4.8
Weathered and unstable rock materials erode from some parts of Earth’s surface and are deposited in others. Under the influence of gravity, rocks fall downhill. Water, ice, and air carry eroded sediments to lower elevations, and ultimately to the ocean.

Big Idea 4.9
Shorelines move back and forth across continents, depositing sediments that become the surface rocks of the land. Through dynamic processes of plate tectonics and glaciation, Earth’s sea level rises and falls by up to hundreds of meters. This fluctuation causes shorelines to advance and recede by hundreds of kilometers. The upper rock layers of most continents formed when rising sea levels repeatedly flooded the interiors of continents.

Last modified July 29, 2009 by Becca Hatheway.

You might also be interested in:

Traveling Nitrogen Classroom Activity Kit

Check out our online store - minerals, fossils, books, activities, jewelry, and household items!...more

Radioactive Decay

Some materials are radioactive. They emit radiation. When an atom of a radioactive substance emits radiation, it is transformed to a new type of atom. This process is called radioactive decay. There are...more

The Earth's Magnetosphere

The Earth has a magnetic field with north and south poles. The magnetic field of the Earth is enclosed in a region surrounding the Earth called the magnetosphere. As the Earth rotates, its hot core generates...more

Plate Tectonics

Many forces cause the surface of the Earth to change over time. However, the largest force that changes our planet's surface is the movement of Earth's outer layer through the process of plate tectonics....more

Mid-Ocean Spreading Ridge

As the Earth cools, hot material from the deep interior rises to the surface. Hot material is depicted in red in this drawing, under an ocean shown in blue green. The hotter material elevates the nearby...more

What is Climate?

Climate in your place on the globe is called regional climate. It is the average weather pattern in a place over more than thirty years, including the variations in seasons. To describe the regional climate...more

What Is an Earthquake?

The expression "on solid ground" is often used to describe something as stable. But sometimes the solid ground underfoot is not stable. It moves as Earth's tectonic plates move. Sometimes it moves gradually....more


If you could travel to the center of the Earth, you would find that it gets hotter and hotter as you travel deeper. The heat is naturally produced by decay of radioactive elements. Within the Earth’s...more

Windows to the Universe, a project of the National Earth Science Teachers Association, is sponsored in part is sponsored in part through grants from federal agencies (NASA and NOAA), and partnerships with affiliated organizations, including the American Geophysical Union, the Howard Hughes Medical Institute, the Earth System Information Partnership, the American Meteorological Society, the National Center for Science Education, and TERC. The American Geophysical Union and the American Geosciences Institute are Windows to the Universe Founding Partners. NESTA welcomes new Institutional Affiliates in support of our ongoing programs, as well as collaborations on new projects. Contact NESTA for more information. NASA ESIP NCSE HHMI AGU AGI AMS NOAA