This diagram illustrates the magnetic field lines around a pair of bar magnets.
Click on image for full size

Electricity and Magnetism

Electricity and magnetism are two closely related and very important topics within the science of physics. We use electricity to power computers and to make motors go. Magnetism makes a compass point North and keeps notes stuck onto our refrigerators. Without electromagnetic radiation we would all be in the dark, for light is one of its many forms!

Electricity can exist as stationary charges, which we call static electricity, or it can be moving and flowing, in which case we refer to it as an electrical current. Subatomic particles, such as protons and electrons, possess minute electrical charges. In relatively recent times, humans have learned to harness the power of electricity. That power, and the many types of electrical circuits and devices we've invented, has radically transformed our world. Electricity plays many important roles in the natural world as well, where it generates powerful flashes of lightning and produces the signals that zip along our nerves.

Magnetism is electricity's close cousin. Some materials, such as iron, are attracted to magnets; while others, such as copper, ignore its influence. We describe the motion of objects influenced by magnets in terms of magnetic fields. We know that magnets have north and south poles, and that like poles repel one another while opposite poles attract. Electricity and magnetism are really different faces of a single fundamental force. Accelerate a magnet and you will produce an electrical current; vary the flow of electricity and you will create a magnetic field. We use these facts to build motors and generators.

Varying electromagnetic fields give rise to electromagnetic radiation. This fast-moving energy comes in a continuum of forms known as the electromagnetic spectrum, which spans radio waves and microwaves to ultraviolet, visible and infrared light and on to powerful X-rays and gamma rays. When broken down into their constituents by spectroscopes, electromagnetic spectra reveal much about distant objects such as stars. We use our knowledge of this radiation to build telescopes for viewing the heavens, radios for communications, and X-ray machines for medical diagnoses.

Modern human society uses electricity and magnetism in innumerable ways. Generators in power plants convert moving steam into a flow of electrical current, which is converted back into mechanical energy when the current reaches a motor. A laser reads the pits on a compact disc, converting microscopic patterns into audible sounds when the resultant electrical signal reaches a speaker. Semiconductors in computers channel the flow of data contained in tiny electrical signals, sending information about electricity and magnetism (and many other topics) across the Internet to your desktop computer!

Last modified September 25, 2007 by Jennifer Bergman.

You might also be interested in:

Traveling Nitrogen Classroom Activity Kit

Check out our online store - minerals, fossils, books, activities, jewelry, and household items!...more

Electromagnetic Radiation

Electromagnetic radiation is the result of oscillating electric and magnetic fields. The wave of energy generated by such vibrations moves through space at the speed of light. And well it should... for...more

Radio Waves

Radio waves are a type of electromagnetic radiation. A radio wave has a much longer wavelength than does visible light. We use radio waves extensively for communications. Radio waves have wavelengths as...more


Light is very strange. Sometimes it is best to think of light as a series of waves. At other times, it is useful to think of light as a swarm of particles. When we think of light as particles, we call...more

Water Refineries?

Using a surprisingly simple, inexpensive technique, chemists have found a way to pull pure oxygen from water using relatively small amounts of electricity, common chemicals and a room-temperature glass...more

Christchurch, New Zealand

Landing in Christchurch, New Zealand, one of the world's windiest airports, is unforgettable. Snowcapped Southern Alps, braided streams criss-cross the landscape amidst a patchwork quilt of green pastures,...more

The Magnetic Field

The force of magnetism causes material to point along the direction the magnetic force points. This property implies that the force of magnetism has a direction. As shown in the diagram to the left, the...more

Planetary Magnets

The Earth is a good example of a planetary dipole, where the lines of force point in a direction out of the South (magnetic) Pole and into the North (magnetic) Pole. Planets can also show evidence of quadrupoles...more

Windows to the Universe, a project of the National Earth Science Teachers Association, is sponsored in part is sponsored in part through grants from federal agencies (NASA and NOAA), and partnerships with affiliated organizations, including the American Geophysical Union, the Howard Hughes Medical Institute, the Earth System Information Partnership, the American Meteorological Society, the National Center for Science Education, and TERC. The American Geophysical Union and the American Geosciences Institute are Windows to the Universe Founding Partners. NESTA welcomes new Institutional Affiliates in support of our ongoing programs, as well as collaborations on new projects. Contact NESTA for more information. NASA ESIP NCSE HHMI AGU AGI AMS NOAA