Shop Windows to the Universe

Please help support Windows to the Universe, and our activities to help Earth and space science teachers, with a tax-exempt donation today!
Typical urban heat island profile, with higher air and surface temperatures than nearby rural areas. Many U.S. cities and suburbs have air temperatures up to 10°F (5.6°C) warmer than the surrounding natural land cover.
Courtesy EPA

Urban Heat Islands

What Is an Urban Heat Island?

An urban heat island (UHI) is a metropolitan area which is significantly warmer than its surroundings. According to the EPA, many U.S. cities have air temperatures up to 10°F (5.6°C) warmer than the surrounding natural land cover. This temperature difference usually is larger at night than during the day and larger in winter than in summer, and is most apparent when winds are weak. Their main causes are changes in the land surface by urban development along with waste heat generated by energy use. As population centers grow, they tend to change greater areas of land which then undergo a corresponding increase in average temperature.

The heat island sketch pictured here shows a typical city's heat island profile. It demonstrates how urban temperatures are typically lower at the urban-rural border than in dense downtown areas. The graphic also show how parks, open land, and bodies of water can create cooler areas.

How Do Heat Islands Form?

Heat islands form as vegetation is replaced by asphalt and concrete for roads, buildings, and other structures necessary to accommodate growing populations. These surfaces absorb—rather than reflect—the sun's heat, causing surface temperatures and overall ambient temperatures to rise. Displacing trees and vegetation minimizes the natural cooling effects of shading and evaporation of water from soil and leaves (evapotranspiration). Tall buildings and narrow streets can heat air trapped between them and reduce air flow. Waste heat from vehicles, factories, and air conditioners may add warmth to their surroundings, further exacerbating the heat island effect. Heat islands can occur year-round during the day or night. Urban-rural temperature differences are often largest during calm, clear evenings. This is because rural areas cool off faster at night than cities, which retain much of the heat stored in roads, buildings, and other structures. As a result, the largest urban-rural temperature difference, or maximum heat island effect, is often three to five hours after sunset. Other contributing factors to the heat island effect include:

  • Size and shape of cities—aerodynamically, cities have a very different shape than rural areas. Tall buildings act as obstacles and reduce wind speeds.
  • Urban deserts—cities can be thought of as virtual deserts with almost no vegetation and materials that are almost completely impermeable to rain. This combination leads to a lack of evapotranspiration which increases sensible heat.
  • Urban canyons—the tall canyons formed by city buildings trap radiant energy in their walls. Comparisons of this "canyon effect" in European and North American cities suggest that areas with denser and taller buildings will more rapidly develop heat islands.
  • Humidity effects—although there is little difference in the amount of water that cities and countrysides retain in their atmospheres (absolute humidity), the higher urban temperatures effectively lowers the relative humidity (since warm air can hold more water than cold air).
  • Urban haze—The haze of air pollution that hangs over many cities can act as a miniature greenhouse layer, preventing outgoing thermal radiation (heat) from escaping from urban areas.
  • Anthropogenic heat—The release of heat from the burning of fossil fuels and also raise urban temperatures. The human-induced energy release over Manhattan Island is approximately 400% the insolation on a winter day.

Are Heat Islands and Global Warming Related?

Heat islands describe local-scale temperature differences, generally between urban and rural areas. In contrast, global warming refers to a gradual rise of the earth's surface temperature. While they are distinct phenomena, summertime heat islands may contribute to global warming by increasing demand for air conditioning, which results in additional power plant emissions of heat-trapping greenhouse gases. Strategies to reduce heat islands, therefore, can also reduce the emissions that contribute to global warming. The heat island effect can also complicate studies of long-term trends. By accurately measuring heat islands, scientists can remove the heat island effect from global temperature records.
Last modified April 15, 2008 by Dennis Ward.

Shop Windows to the Universe Science Store!

The Summer 2010 issue of The Earth Scientist, available in our online store, includes articles on rivers and snow, classroom planetariums, satellites and oceanography, hands-on astronomy, and global warming.

Windows to the Universe Community



You might also be interested in:

Cool It! Game

Check out our online store - minerals, fossils, books, activities, jewelry, and household items!...more

World Leaders Developing a New Plan to Help Earth’s Changing Climate

Leaders from 192 nations of the world are trying to make an agreement about how to limit emissions of heat-trapping greenhouse gases, mitigate climate change, and adapt to changing environmental conditions....more

What is Climate?

Climate in your place on the globe is called regional climate. It is the average weather pattern in a place over more than thirty years, including the variations in seasons. To describe the regional climate...more

Earth's Greenhouse Gases

Less than 1% of the gases in Earth's atmosphere are called greenhouse gases. Even though they are not very abundant, these greenhouse gases have a major effect. Carbon dioxide (CO2), water vapor (H2O),...more

Space Missions to study Earth's Atmosphere & Climate

Television weather forecasts in the space age routinely feature satellite views of cloud cover. Cameras and other instruments on spacecraft provide many types of valuable data about Earth's atmosphere...more

Modeling the Future of Climate Change

Predicting how our climate will change in the next century or beyond requires tools for assessing how planet responds to change. Global climate models, which are run on some of the world's fastest supercomputers,...more

Effects of Climate Change Today

The world's surface air temperature increased an average of 0.6° Celsius (1.1°F) during the last century according to the Intergovernmental Panel on Climate Change (IPCC). This may not sound like very...more

What Controls the Climate?

A factor that has an affect on climate is called a “forcing.” Some forcings, like volcanic eruptions and changes in the amount of solar energy, are natural. Others, like the addition of greenhouse gases...more

Windows to the Universe, a project of the National Earth Science Teachers Association, is sponsored in part is sponsored in part through grants from federal agencies (NASA and NOAA), and partnerships with affiliated organizations, including the American Geophysical Union, the Howard Hughes Medical Institute, the Earth System Information Partnership, the American Meteorological Society, the National Center for Science Education, and TERC. The American Geophysical Union and the American Geosciences Institute are Windows to the Universe Founding Partners. NESTA welcomes new Institutional Affiliates in support of our ongoing programs, as well as collaborations on new projects. Contact NESTA for more information. NASA ESIP NCSE HHMI AGU AGI AMS NOAA