Shop Windows to the Universe

We now offer the Cool It! card game in our Science Store. Cool It! is the new card game from UCS that teaches kids about the choices we have when it comes to climate change.
This graph shows the number of sunspots seen each year for 400 years (from 1600 to 2000). There were almost no sunspots during the Maunder Minimum. During the Dalton Minimum, there were fewer sunspots than normal.
Click on image for full size
Image courtesy NASA (modified by Windows to the Universe staff).

History of Sunspot Observations

You may not know that humans have observed sunspots for a very long time. These records have been around so long in fact, that we can link sunspot number with solar activity. Large sunspots can sometimes be seen with just your eye, especially when the Sun is viewed through fog near the horizon at sunrise or sunset. (WARNING: Never look directly at the Sun! Even a brief glance can damage your eyes!)

The first written record of sunspots was made by Chinese astronomers around 800 B.C. Court astrologers in ancient China and Korea, who believed sunspots foretold important events, kept records off and on of sunspots for hundred of years. An English monk named John of Worcester made the first drawing of sunspots in December 1128.

Soon after the invention of the telescope, several astronomers used the telescope to make observations of sunspots. This was around 1600. Astronomers of that time weren't quite sure what to make of these spots on the Sun. Some thought they were shadows of undiscovered planets crossing the Sun, while others believed they were dark clouds in the Sun's atmosphere. The movement of sunspots across the face of the Sun allowed astronomers in the early 1600's to make the first estimates of the Sun's rotation period (about 27 days).

In 1843 an amateur German astronomer named Samuel Schwabe discovered the rise and fall of yearly sunspot counts we now call the sunspot cycle. He first guessed the cycle's length at 10 years. Two French physicists, Louis Fizeau and Léon Foucault, took the first photo of the Sun and sunspots in April 1845. Around 1852 four astronomers noted that the period of the sunspot cycle was identical to the period of changes of geomagnetic activity at Earth, giving birth to the study of Sun-Earth connections we now call "space weather".

It would appear that sunspots not only have a connection to geomagnetic activity at Earth, but they play a role in climate change as well. In the last thousands of years, there have been many periods where there were not many sunspots found on the Sun. The most famous is a period from about 1645 to 1715, called the Maunder Minimum. This period corresponds to the middle of a series of exceptionally cold winters throughout Europe known as the Little Ice Age. Scientists still debate whether decreased solar activity helped cause the Little Ice Age, or if the cold snap happen to occur around the same time as the Maunder Minimum. In contrast, a period called the Medieval Maximum, which lasted from 1100 to 1250, apparently had higher levels of sunspots and associated solar activity. This time coincides (at least partially) with a period of warmer climates on Earth called the Medieval Warm Period. Sunspot counts have been higher than usual since around 1900, which has led some scientists to call the time we are in now the Modern Maximum.

Last modified September 6, 2005 by Jennifer Bergman.

Shop Windows to the Universe Science Store!

Cool It! is the new card game from the Union of Concerned Scientists that teaches kids about the choices we have when it comes to climate change—and how policy and technology decisions made today will matter. Cool It! is available in our online store.

Windows to the Universe Community

News

Opportunities

You might also be interested in:

Solar Activity

The Sun is not a quiet place, but one that exhibits sudden releases of energy. One of the most frequently observed events are solar flares: sudden, localized, transient increases in brightness that occur...more

Transit

A "transit" is the name of a type of astronomical event. A transit is like a solar eclipse, when the moon blocks out the Sun. During a transit a planet, not the Moon, moves between Earth and the Sun. There...more

The Solar Atmosphere

The visible solar atmosphere consists of three regions: the photosphere, the chromosphere, and the solar corona. Most of the visible (white) light comes from the photosphere, this is the part of the Sun...more

Space Weather Mysteries & Unanswered Questions

The study of space weather is a relatively young science. As such it has many unanswered questions and unsolved mysteries. Although some of our data relevant to space weather, such as sunspot counts, go...more

Sun's Effect on Earth's Weather (Wind)

Energy from the Sun affects many things on Earth. One of the main things the Sun does is warm our planet, including the atmosphere. This energy drives much of our weather. The solar cycle, the rise and...more

Images & Multimedia

Here you will find links to all sorts of pictures, animations, videos, sounds, and interactive multimedia that are on Windows to the Universe Explore collections of images in the Image Galleries. Watch...more

Solar Storms

You know, of course, that certain conditions in the Earth's atmosphere can cause powerful storms like thunderstorms, blizzards, tornadoes, and hurricanes. The Sun also has an atmosphere, and incredible...more

History of Sunspot Observations

You may not know that humans have observed sunspots for a very long time. These records have been around so long in fact, that we can link sunspot number with solar activity. Large sunspots can sometimes...more

Windows to the Universe, a project of the National Earth Science Teachers Association, is sponsored in part by the National Science Foundation and NASA, our Founding Partners (the American Geophysical Union and American Geosciences Institute) as well as through Institutional, Contributing, and Affiliate Partners, individual memberships and generous donors. Thank you for your support! NASA AGU AGI NSF