Solar Cycle

The number of sunspots on the Sun is not constant. In addition to the obvious variation caused by the Sun's rotation (sunspots disappear from view and then re-appear), over time new sunspot groups form and old ones decay and fade away. When viewed over short periods of time (a few weeks or months), this variation in the number of sunspots might seem to be random. However, observations over many years reveal a remarkable feature of the Sun: the number of sunspots varies in a periodic manner, usually described as the 11 year cycle (in actuality, the period varies, and has been closer to 10.5 years this century). The 11 year sunspot cycle is related to a 22 year cycle for the reversal of the Sun's magnetic field. In 1848 Johann Rudolf Wolf devised a method of counting sunspots on the solar disk called the Wolf number. Today the Wolf number (averaged from many observing sites) is used to keep track of the solar cycle. While the cycle has been relatively uniform this century, there have been large variations in the past. From about 1645 to 1715, a period known as the Maunder minimum, apparently few sunspots were present on the Sun. During the solar cycle,the migration of sunspots in latitude has a ``butterfly pattern.''

Although the number of sunspots is the most easily observed feature, essentially all aspects of the Sun and solar activity are influenced by the solar cycle. Because solar activity (such as coronal mass ejections) is more frequent at solar maximum and less frequent at solar minimum, geomagnetic activity also follows the solar cycle. Why is there a solar cycle? No one knows the answer to this question. A detailed explanation of the solar cycle is a fundamental physics problem still waiting to be solved.

Last modified April 16, 2008 by Jennifer Bergman.

You might also be interested in:

Traveling Nitrogen Classroom Activity Kit

Check out our online store - minerals, fossils, books, activities, jewelry, and household items!...more

Sunspots

Sunspots are dark, planet-sized regions that appear on the "surface" of the Sun. Sunspots are "dark" because they are colder than the areas around them. A large sunspot might have a temperature of about...more

Maunder's Butterfly Diagram

Throughout the solar_cycle, the latitude of sunspot occurrence varies with an interesting pattern. The plot on the left shows the latitude of sunspot occurence versus time (in years). Sunspots are typically...more

Sunspots and Magnetic Fields

Sunspots are caused by very strong magnetic fields on the Sun. The best way to think about the very complicated process of sunspot formation is to think of magnetic "ropes" breaking through the visible...more

Solar Cycle Variations and Effect on Earth's Climate

For more than 100 years, scientists have wondered if cycles on the Sun and changes of the energy received at Earth because of those cycles affect weather or global climate on Earth. It is now thought that...more

Scientists Discover Connections among the Solar Cycle, the Stratosphere and the Ocean

An international team of scientists, led by the National Center for Atmospheric Research (NCAR) in Boulder, Colorado, used more than a 100 years of weather observations and three powerful computer models...more

Solar Cycle Linked to Global Climate

Scientists at the National Center for Atmospheric Research (NCAR) have found a connection between solar activity and climate changes on earth. Their research may lead to the ability to predict how the...more

Lower Solar Activity Linked to Changes in Sun's Conveyor Belt

The sun goes through cycles that last approximately 11 years. These solar cycle include phases with more magnetic activity, sunspots, and solar flares. They also include phases with less activity. The...more

Windows to the Universe, a project of the National Earth Science Teachers Association, is sponsored in part is sponsored in part through grants from federal agencies (NASA and NOAA), and partnerships with affiliated organizations, including the American Geophysical Union, the Howard Hughes Medical Institute, the Earth System Information Partnership, the American Meteorological Society, the National Center for Science Education, and TERC. The American Geophysical Union and the American Geosciences Institute are Windows to the Universe Founding Partners. NESTA welcomes new Institutional Affiliates in support of our ongoing programs, as well as collaborations on new projects. Contact NESTA for more information. NASA ESIP NCSE HHMI AGU AGI AMS NOAA