Shop Windows to the Universe

Our Glaciers: Then and Now activity kit helps you see the changes taking place in glaciers around the world. See all our activity kits and classroom activities.
The Sudbury Neutrino Observatory (SNO), a 1000 ton heavy water Cherenkov detector under construction in INCO's Creighton mine near Sudbury, Ontario (Canada)

Neutrino detectors

Neutrino interactions with matter are extremely rare, so detecting a neutrino is very hard.

Neutrino detectors are typically large, underground tanks filled with a fluid that reacts to the passage of neutrinos. In neutrino detection, bigger is better! The bigger the tank (detector), the more neutrinos it will detect.

One example of a neutrino detector is the Super-Kamionkande under construction in Japan.

Some neutrino detectors use water as the liquid inside the tank. But here's a piece of trivia for you: early neutrino detectors were filled with perchloroethane which is just a type of cleaning fluid!


Shop Windows to the Universe Science Store!

Cool It! is the new card game from the Union of Concerned Scientists that teaches kids about the choices we have when it comes to climate change—and how policy and technology decisions made today will matter. Cool It! is available in our online store.

Windows to the Universe Community

News

Opportunities

You might also be interested in:

The Super Kamiokande

Super-Kamiokande is a neutrino detector located in the Kamioka Mozumi mine in Japan. Water fills this huge tank. In fact, it is the world's largest underground neutrino detector experiment (built under...more

Fusion Inside the Stars

Fusion in the core of stars is reached when the density and temperature are high enough. There are different fusion cycles that occur in different phases of the life of a star. These different cycles make...more

The Cherenkov Effect

The theory of relativity states that no particle can travel at the speed of light in a vacuum. However, light travels at lower speeds in dense media, like water. A particle traveling in water must have...more

Diagnostics for the Solar Interior

The Sun releases energy. The processes that make this energy take place in the center of the Sun. We can't see past the surface of the Sun. But scientists use indirect ways (diagnostics) to figure out...more

What is a Telescope?

With just our eyes, we can see many things in the night sky, including stars, planets, meteors, comets, auroras, and the Moon. Have you ever looked up and wished that you could take a closer look at the...more

Neutrino detectors

Neutrino interactions with matter are extremely rare, so detecting a neutrino is very hard. Neutrino detectors are typically large, underground tanks filled with a fluid that reacts to the passage of neutrinos....more

IMF

IMF stands for Interplanetary Magnetic Field. It is another name for the Sun's magnetic field. The Sun's magnetic field is huge! It goes beyond any of the planets. The Sun's magnetic field got its name...more

The Hydrogen Fusion Process

In the basic Hydrogen fusion cycle, four Hydrogen nuclei (protons) come together to make a Helium nucleus. This is the simple version of the story. There are actually electrons, neutrinos and photons involved...more

Windows to the Universe, a project of the National Earth Science Teachers Association, is sponsored in part is sponsored in part through grants from federal agencies (NASA and NOAA), and partnerships with affiliated organizations, including the American Geophysical Union, the Howard Hughes Medical Institute, the Earth System Information Partnership, the American Meteorological Society, the National Center for Science Education, and TERC. The American Geophysical Union and the American Geosciences Institute are Windows to the Universe Founding Partners. NESTA welcomes new Institutional Affiliates in support of our ongoing programs, as well as collaborations on new projects. Contact NESTA for more information. NASA ESIP NCSE HHMI AGU AGI AMS NOAA