Shop Windows to the Universe

Our Glaciers: Then and Now activity kit helps you see the changes taking place in glaciers around the world. See all our activity kits and classroom activities.
Do you see the bubbles in this piece of Antarctic ice? It comes from a core sample. The bubbles contain carbon dioxide and other gases that were trapped in the ice when formed thousands of years ago. Researchers carefully crush the piece and capture the gases that escape when the bubbles break. This allows them to better understand what carbon dioxide levels were over time.
Click on image for full size
Courtesy of Oregon State University

Gas From the Past Gives Scientists New Insights into Climate and the Oceans
News story originally written on October 3, 2008

In recent years, public discussion of climate change has included concerns that increased levels of carbon dioxide will contribute to global warming, which in turn may change the circulation in the Earth's ocean, with potentially disastrous consequences.

In a paper published today in the journal Science, researchers presented new data from their analysis of ice core samples and ocean deposits dating as far back as 90,000 years ago and suggest that warming, carbon dioxide levels and ocean currents are tightly inter-related. These findings provide scientists with more data and insights into how these phenomena were connected in the past and may lead to a better understanding of future climate trends.

With support from the National Science Foundation, Jinho Ahn and Edward Brook, both geoscientists at Oregon State University, analyzed 390 ice core samples taken from Antarctic ice at Byrd Station. The samples offered a snap shot of the Earth’s atmosphere and climate dating back between 20,000 and 90,000 years. Sections of the samples were carefully crushed, releasing gases from bubbles that were frozen within the ice through the millennia. These ancient gas samples were then analyzed to measure the levels of carbon dioxide contained in each one.

Ahn and Brook then compared the carbon dioxide levels from the ice samples with climate data from Greenland and Antarctica that reflected the approximate temperatures when the gases were trapped and with ocean sediments in Chile and the Iberian Peninsula. Data from the sediments provided the scientists with an understanding of how fast or slow the ocean currents were in the North Atlantic and how well the Southern Ocean was stratified during these same time periods.

The researchers discovered that elevations in carbon dioxide levels were related to subsequent increases in the Earth's temperature as well as reduced circulation of ocean currents in the North Atlantic. The data also suggests that carbon dioxide levels increased along with the weakening of mixing of waters in the Southern Ocean. This, the researchers say, may point to potential future scenario where global warming causes changes in ocean currents which in turn causes more carbon dioxide to enter the atmosphere, adding more greenhouse gas to an already warming climate.

Ahn and Brook state that a variety of factors may be at work in the future that alter the relationship between climate change and ocean currents. One potential factor is that the levels of carbon dioxide in today's atmosphere are much higher than they were during the period Ahn and Brook studied. The researchers hope that future studies of the ancient gas from a newly drilled ice core may allow a higher resolution analysis and yield more details about the timing between carbon dioxide levels and the temperature at the Earth's poles.

Text above is courtesy of the National Science Foundation

Last modified January 11, 2009 by Lisa Gardiner.

Shop Windows to the Universe Science Store!

Our online store includes issues of NESTA's quarterly journal, The Earth Scientist, full of classroom activities on different topics in Earth and space science, ranging from seismology, rocks and minerals, oceanography, and Earth system science to astronomy!

Windows to the Universe Community

News

Opportunities

You might also be interested in:

Cool It! Game

Check out our online store - minerals, fossils, books, activities, jewelry, and household items!...more

What is Climate?

Climate in your place on the globe is called regional climate. It is the average weather pattern in a place over more than thirty years, including the variations in seasons. To describe the regional climate...more

Carbon Dioxide - CO2

Carbon dioxide is a colorless and non-flammable gas at normal temperature and pressure. Although much less abundant than nitrogen and oxygen in Earth's atmosphere, carbon dioxide is an important constituent...more

Global Warming: Scientists Say Earth Is Heating Up

Earth’s climate is warming. During the 20th Century Earth’s average temperature rose 0.6° Celsius (1.1°F). Scientists are finding that the change in temperature has been causing other aspects of our planet...more

The Cryosphere

The cryosphere includes the parts of the Earth system where water is in its frozen (solid) form. This includes snow, sea ice, icebergs, ice shelves, glaciers, ice sheets, and permafrost soils. Approximately...more

Thermohaline Circulation: The Global Ocean Conveyor

The world has several oceans, the Pacific, the Atlantic, the Indian, the Arctic, and the Southern Ocean. While we have different names for them, they are not really separate. There are not walls between...more

Antarctica

Antarctica is unique. It is the coldest, windiest, and driest continent on Earth. The land is barren and mostly covered with a thick sheet of ice. Antarctica is almost entirely south of the Antarctic Circle...more

Triggers of Volcanic Eruptions in Oregon's Mount Hood Investigated

A new study has found that a mixing of two different types of magma is the key to the historic eruptions of Mount Hood, Oregon's tallest mountain, and that eruptions often happen in a relatively short...more

Windows to the Universe, a project of the National Earth Science Teachers Association, is sponsored in part is sponsored in part through grants from federal agencies (NASA and NOAA), and partnerships with affiliated organizations, including the American Geophysical Union, the Howard Hughes Medical Institute, the Earth System Information Partnership, the American Meteorological Society, the National Center for Science Education, and TERC. The American Geophysical Union and the American Geosciences Institute are Windows to the Universe Founding Partners. NESTA welcomes new Institutional Affiliates in support of our ongoing programs, as well as collaborations on new projects. Contact NESTA for more information. NASA ESIP NCSE HHMI AGU AGI AMS NOAA