Shop Windows to the Universe

Hands On Mineral Identification helps you to identify over 14,500 minerals! By M. Darby Dyar, Ph.D. See our DVD collection.
Approximately one third of this leaf was eaten by insects during the Paleocene-Eocene Thermal Maximum more than 55 million years ago.
Click on image for full size
Courtesy of Ellen Currano

Fossil Record Suggests Insect Assaults on Foliage May Increase with Warming Globe
News story originally written on February 11, 2008

More than 55 million years ago, the Earth experienced a rapid jump in global carbon dioxide levels that raised temperatures across the planet. Now, researchers studying plants from that time have found that the rising temperatures may have boosted the foraging of insects. As modern temperatures continue to rise, the researchers believe the planet could see increasing crop damage and forest devastation.

The researchers, from Penn State, the Smithsonian Institution, the University of Maryland, the University of California, Santa Barbara, and Wesleyan University published their findings in the Feb. 11, 2008, Proceedings of the National Academy of Sciences .

"Our study convincingly shows that there is a link between temperature and insect feeding on leaves," said lead author Ellen Currano of Pennsylvania State University and the Smithsonian Institution. "When temperature increases, the diversity of insect feeding damage on plant species also increases."

With support from the National Science Foundation (NSF), Currano collected the study fossils from the badlands of Wyoming, gathering more than 5,000 fossil leaves from five sites representing time zones before, during and after the roughly 100,000 year temperature spike called the Paleocene-Eocene Thermal Maximum (PETM).

The researchers found that the PETM plants were noticeably more damaged than fossil plants before and after that period. The PETM plants, many of which are legumes -- the family that now includes beans and peas -- show damage with greater frequency, greater variety (such as mining, galling, surface feeding and other assaults) and a more destructive character than plants from the surrounding geologic time periods.

"This study shows that insects responded rapidly to a major change in climate during the PETM," said Enriqueta Barrera, program director in NSF's Division of Earth Sciences, which helped fund the project. "This is in agreement with previous findings by [co-author] Scott Wing of the Smithsonian Institution who found that plants that previously were common much farther south migrated northward at this time"

In order to test alternative reasons for the increased damage, the researchers looked at whether the plants in the analysis had key traits that made them more palatable to insects. However, after using established analytical techniques to measure various leaf structures in all of the specimens, the researchers concluded that the PETM plants do not appear to vary structurally from the plants in the rock layers above and below the temperature spike.

The researchers also looked to see if the insect species feeding on the leaves changed over the time period. The analysis showed that what changed was the abundance of insect species that are highly specialized in the type of plant they consume and the way they consume it, such as leaf miners and gallers - they are far more abundant in the PETM.

"We wanted to see whether the increase in insect damage during the PETM was because the leaves were less tough or more nutritious," said Currano. "There is no evidence to support this. Instead, we think that the warming allowed insect species from the tropics, particularly those that feed in a highly specific manner, to migrate north. "

Biologists are already aware that insects in the tropics consume more plants and that warming temperatures are causing organisms to widen their ranges. In addition, research has shown that plants grown under higher concentrations of carbon dioxide (CO 2 ) are less nutritious, so insects must eat more plant tissue to get the same sustenance. These earlier studies support the recent findings about the PETM.

Because food webs that involve plant-eating insects affect as much as three quarters of organisms on Earth, the researchers believe that the current increase in temperature could have a profound impact on present ecosystems, and potentially to crops, if the pattern holds true in modern times.

"This study represents a highly integrative approach, using well-studied systems, to model ecological dynamics during upcoming climate shifts," said William Hahn, a program director in NSF's Division of Graduate Education who supported Currano's work with a research fellowship. "The truly relevant description of past climate-change effects on plant-insect interactions, specifically the probability of increased insect damage to plants with rising temperatures, is a forward-looking approach that will help us prepare for the effects of future global warming," he added.

In addition to Currano's Graduate Research Fellowship, the research team was supported by grants from NSF's Division of Earth Sciences, as well as funding from the Roland Brown Fund of the Smithsonian's National Museum of Natural History, the Evolving Earth Foundation, the Paleontological Society, Penn State, the Petroleum Research Fund, the David and Lucile Packard Foundation and the University of Pennsylvania.

Text above is courtesy of the National Science Foundation

Last modified April 29, 2008 by Becca Hatheway.

Shop Windows to the Universe Science Store!

Our online store includes books on science education, classroom activities in The Earth Scientist, mineral and fossil specimens, and educational games!

Windows to the Universe Community



You might also be interested in:

Traveling Nitrogen Classroom Activity Kit

Check out our online store - minerals, fossils, books, activities, jewelry, and household items!...more

Carbon Dioxide - CO2

Carbon dioxide is a colorless and non-flammable gas at normal temperature and pressure. Although much less abundant than nitrogen and oxygen in Earth's atmosphere, carbon dioxide is an important constituent...more

Kingdom Plantae

Though not the largest kingdom, with a mere 300,000 species catalogued, many might argue that the Kingdom Plantae just may be the most important group of living organisms. In the process known as "photosynthesis",...more

What Is a Fossil?

Fossils are evidence of ancient life preserved within sedimentary rocks. They are clues to what living things, ecosystems, and environments were like since life has existed on this planet. The oldest...more

What is Climate?

Climate in your place on the globe is called regional climate. It is the average weather pattern in a place over more than thirty years, including the variations in seasons. To describe the regional climate...more

Biomes and Ecosystems

Biomes are large regions of the world with similar plants, animals, and other living things that are adapted to the climate and other conditions. Explore the links below to learn more about some of the...more

Effects of Climate Change Today

The world's surface air temperature increased an average of 0.6 Celsius (1.1F) during the last century according to the Intergovernmental Panel on Climate Change (IPCC). This may not sound like very...more


Evolution is the process of change through time. Many things evolve. Language evolves so that English spoken four hundred years ago during the time of playwright Shakespeare was very different than English...more

Windows to the Universe, a project of the National Earth Science Teachers Association, is sponsored in part by the National Science Foundation and NASA, our Founding Partners (the American Geophysical Union and American Geosciences Institute) as well as through Institutional, Contributing, and Affiliate Partners, individual memberships and generous donors. Thank you for your support! NASA AGU AGI NSF