Shop Windows to the Universe

The Universe at Your Fingertips 2.0 DVD from the Astronomical Society of the Pacific is in our online store, filled with Earth and space science resources.
Newly discovered interactions between the Sun and the Earth affect our climate.
Click on image for full size
Image Courtesy of UCAR

Connections among Solar Cycle, Stratosphere and Ocean Discovered
News story originally written on August 27, 2009

Subtle connections among the 11-year-solar cycle, the stratosphere and the tropical Pacific Ocean work in sync to generate periodic weather patterns that affect much of the globe, according to research results appearing this week in the journal Science.

The findings will help scientists get an edge on predicting the intensity of certain climate phenomena, such as the Indian monsoon and tropical Pacific rainfall, years in advance.

"It's been long known that weather patterns are well-correlated to very small variations in total solar energy reaching our planet during 11-year solar cycles," says Jay Fein, program director in the National Science Foundation (NSF)'s Division of Atmospheric Sciences, which funded the research. "What's been an equally long mystery, however, is how they are physically connected. This remarkable study is beginning to unravel that mystery."

An international team of authors led by the National Center for Atmospheric Research (NCAR) in Boulder, Colo., used more than a century of weather observations and three powerful computer models to tackle one of the more difficult questions in meteorology: if the total energy that reaches Earth from the Sun varies by only 0.1 percent across the approximately 11-year solar cycle, how can it drive major changes in weather patterns on Earth?

The answer, according to the study, has to do with the Sun's impact on two seemingly unrelated regions.

Chemicals in the stratosphere and sea surface temperatures in the Pacific Ocean respond during solar maximum in a way that amplifies the Sun's influence on some aspects of air movement.

This can intensify winds and rainfall, change sea surface temperatures and cloud cover over certain tropical and subtropical regions, and ultimately influence global weather.

"The Sun, the stratosphere, and the oceans are connected in ways that can influence events such as winter rainfall in North America," says NCAR scientist Gerald Meehl, the lead author of the paper. "Understanding the role of the solar cycle can provide added insight as scientists work over the next decade or two toward predicting regional weather patterns."

The results builds on recent papers by Meehl and colleagues exploring the link between the peaks in the solar cycle and events on Earth that resemble aspects of La Niña events, but are distinct from those larger patterns associated with changes in pressure and known as the Southern Oscillation.

The connection between peaks in solar energy and cooler water in the equatorial Pacific was first discovered by Harry Van Loon of NCAR and Colorado Research Associates, a co-author of the paper.

The contribution by Meehl and his colleagues is to document that two mechanisms that had been previously theorized in fact work together to amplify the response in the tropical Pacific.

The team first confirmed a theory that the slight increase in solar energy during the peak production of sunspots is absorbed by stratospheric ozone.

The energy warms the air in the stratosphere over the tropics where the sunlight is most intense, while also stimulating the production of additional ozone there that absorbs even more solar energy.

Since the stratosphere warms unevenly, with the most pronounced warming occurring at lower latitudes, stratospheric winds are altered and, through a chain of interconnected processes, end up strengthening tropical storms and precipitation.

At the same time, the increased sunlight at solar maximum causes a slight warming of ocean surface waters, especially across the subtropical Pacific, where Sun-blocking clouds are normally scarce.

That small amount of extra heat leads to more evaporation, producing additional water vapor. In turn, the moisture is carried by trade winds to the normally rainy areas of the western tropical Pacific, fueling heavier rains and reinforcing the effects of the stratospheric mechanism.

The top-down influence of the stratosphere and the bottom-up influence of the ocean work together to intensify this loop and strengthen the trade winds.

As more sunshine hits drier areas, these changes reinforce each other, leading to less clouds in the subtropics, allowing even more sunlight to reach the surface, and producing a positive feedback loop that further intensifies the climate response.

These stratospheric and ocean responses during solar maximum keep the eastern Pacific even cooler and drier than usual, producing conditions similar to a La Niña event.

However, the cooling of about 1-2 degrees Fahrenheit is focused further east than in a typical La Niña, is only about half as strong, and is associated with different wind patterns in the stratosphere.

Earth's response to the solar cycle continues over the year or two following peak sunspot activity. The La Niña-like pattern triggered by the solar maximum tends to evolve into a pattern similar to El Niño, as slow-moving currents replace the cool water over the eastern tropical Pacific with warmer water.

Again, the ocean response is only about half as strong as with El Niño, and the lagged warmth is not as consistent as the cold event-like pattern that occurs during peaks in the solar cycle.

Solar maximum could potentially enhance a true La Niña event or dampen a true El Niño event. The La Niña of 1988-89 occurred near the peak of solar maximum.

That La Niña became unusually strong and was associated with significant changes in weather patterns, such as an unusually mild and dry winter in the southwestern United States.

The Indian monsoon, Pacific precipitation and sea surface temperatures, and other regional climate patterns are largely driven by rising and sinking air in Earth's tropics and subtropics.

The new study could help scientists use solar-cycle predictions to estimate how that circulation, and the regional climate patterns related to it, might vary over the next decade or two.

To tease out the elusive mechanisms that connect the Sun and Earth, the study team needed three computer models that provided overlapping views of the climate system.

One model, which analyzed the interactions between sea surface temperatures and lower atmosphere, produced a small cooling in the equatorial Pacific during solar maximum years.

The second model, which simulated the stratospheric ozone response mechanism, produced some increases of tropical precipitation but on a much smaller scale than the observed patterns.

The third model contained ocean-atmosphere interactions as well as the role of ozone. It showed, for the first time, that the two combined to produce a response in the tropical Pacific during peak solar years that was close to actual observations.

"With the help of increased computing power and improved models, as well as observational discoveries, we are uncovering more of how the mechanisms combine to connect solar variability to our weather and climate," Meehl says.

The research was also funded by the U.S. Department of Energy.

Text above is courtesy of the National Science Foundation

Last modified September 3, 2009 by Becca Hatheway.

Shop Windows to the Universe Science Store!

Our online store includes fun classroom activities for you and your students. Issues of NESTA's quarterly journal, The Earth Scientist are also full of classroom activities on different topics in Earth and space science!

Windows to the Universe Community

News

Opportunities

You might also be interested in:

Traveling Nitrogen Classroom Activity Kit

Check out our online store - minerals, fossils, books, activities, jewelry, and household items!...more

Rain

Rain is precipitation that falls to the Earth in drops of 5mm or greater in diameter according to the US National Weather Service. Virga is rain that evaporates before reaching the ground. Raindrops form...more

Wind

Wind is moving air. Warm air rises, and cool air comes in to take its place. This movement creates different pressures in the atmosphere which creates the winds around the globe. Since the Earth spins,...more

Sunspots

Sunspots are dark, planet-sized regions that appear on the "surface" of the Sun. Sunspots are "dark" because they are cooler than their surroundings. A large sunspot might have a central temperature of...more

Ozone - An Overview

The Ozone Hole. The Ozone Hoax. Pollution. Skin Cancer. The topic of ozone makes headlines on a regular basis, but why does a single molecule merit such media coverage? How important is the ozone in our...more

Evaporation

One process which transfers water from the ground back to the atmosphere is evaporation. Evaporation is when water passes from a liquid phase to a gas phase. Rates of evaporation of water depend on factors...more

Surface Ocean Currents

The water at the ocean surface is moved primarily by winds. Large scale winds move in specific directions because they are affected by Earth’s spin and the Coriolis Effect. Because Earth spins constantly,...more

Triggers of Volcanic Eruptions in Oregon's Mount Hood Investigated

A new study has found that a mixing of two different types of magma is the key to the historic eruptions of Mount Hood, Oregon's tallest mountain, and that eruptions often happen in a relatively short...more

Windows to the Universe, a project of the National Earth Science Teachers Association, is sponsored in part is sponsored in part through grants from federal agencies (NASA and NOAA), and partnerships with affiliated organizations, including the American Geophysical Union, the Howard Hughes Medical Institute, the Earth System Information Partnership, the American Meteorological Society, the National Center for Science Education, and TERC. The American Geophysical Union and the American Geosciences Institute are Windows to the Universe Founding Partners. NESTA welcomes new Institutional Affiliates in support of our ongoing programs, as well as collaborations on new projects. Contact NESTA for more information. NASA ESIP NCSE HHMI AGU AGI AMS NOAA