Ancient sediments like these in Brittany, France, help reconstruct Paleozoic sea-level history.
Click on image for full size
Image Courtesy of Bil Haq, NSF

Paleozoic "Sediment Curve" Provides New Tool for Tracking Sea-floor Sediment Movements
News story originally written on October 2, 2008

As the world looks for more energy, the oil industry will need more refined tools for discoveries in places where searches have never before taken place, geologists say.

One such tool is a new sediment curve (which shows where sediment-on-the-move is deposited), derived from sediments of the Paleozoic Era 542 to 251 million years ago, scientists report in this week's issue of the journal Science. The sediment curve covers the entire Paleozoic Era.

"The new Paleozoic sea-level sediment curve provides a way of deriving predictive models of sediment migration on continental margins and in interior seaways," said Bilal Haq, lead author of the Science paper and a marine geologist at the National Science Foundation (NSF). The paper's co-author is geologist Stephen Schutter of Murphy Oil International in Houston, Tx.

"The sediment curve is of interest to industry, and also to scientists in academia," said Haq, "as the rise and fall of sea-level form the basis for intepretations of Earth history based on stratigraphy."

Through stratigraphy, the study of rock layering (stratification), scientists can derive a sequence of time and events in a particular region. Recent advances in the field of stratigraphy, including better time-scales for when sediments were deposited, and availability of data on a worldwide basis, are allowing scientists to reconstruct sea level during the Paleozoic.

The rises and falls of sea level during this period form the basis of stratigraphic interpretations of geology not only in the sea, but on land. These sea level increases and decreases are used extensively, Haq said, in predictive models of sediment movements.

The current Science paper is a shorter version of the results of a global synthesis of Paleozoic stratigraphy on which the authors have worked for many years.

"We hope that the publication of a sediment curve for this entire era will enhance interest in Paleozoic geology," said Haq, "and help the exploration industry in its efforts to look at older and deeper sediments."

Text above is courtesy of the National Science Foundation

Last modified January 16, 2009 by Becca Hatheway.

You might also be interested in:

Cool It! Game

Check out our online store - minerals, fossils, books, activities, jewelry, and household items!...more

Step 2: Erosion and Transport (Sediments on the Move!)

Sneeze into a pile of dust and the particles fly everywhere. Sneeze into a pile of rocks and they stay put. That’s because they have more mass. You need more force than a sneeze to move those rocks. Wind...more

Sea Level

Measuring sea level, the level of the ocean surface, continually over many years allows scientists to calculate whether sea level is changing. This helps us to understand how much sea level rise is happening...more

Step 3: Deposition (Sediments Settling Down!)

When water or wind loses energy and slows down, sediment can no longer be carried in it. The particles of sediment fall through the water or air and form a blanket of sediment on the bottom of a river,...more

Triggers of Volcanic Eruptions in Oregon's Mount Hood Investigated

A new study has found that a mixing of two different types of magma is the key to the historic eruptions of Mount Hood, Oregon's tallest mountain, and that eruptions often happen in a relatively short...more

Oldest Earth Mantle Reservoir Discovered

Researchers have found a primitive Earth mantle reservoir on Baffin Island in the Canadian Arctic. Geologist Matthew Jackson and his colleagues from a multi-institution collaboration report the finding--the...more

It’s Not Your Fault – A Typical Fault, Geologically Speaking, That Is

Some geologic faults that appear strong and stable, slip and slide like weak faults. Now an international team of researchers has laboratory evidence showing why some faults that 'should not' slip are...more

Extended Period of Lower Solar Activity Linked to Changes in Sun's Conveyor Belt

A new analysis of the unusually long solar cycle that ended in 2008 suggests that one reason for the long cycle could be a stretching of the sun's conveyor belt, a current of plasma that circulates between...more

Windows to the Universe, a project of the National Earth Science Teachers Association, is sponsored in part is sponsored in part through grants from federal agencies (NASA and NOAA), and partnerships with affiliated organizations, including the American Geophysical Union, the Howard Hughes Medical Institute, the Earth System Information Partnership, the American Meteorological Society, the National Center for Science Education, and TERC. The American Geophysical Union and the American Geosciences Institute are Windows to the Universe Founding Partners. NESTA welcomes new Institutional Affiliates in support of our ongoing programs, as well as collaborations on new projects. Contact NESTA for more information. NASA ESIP NCSE HHMI AGU AGI AMS NOAA