Shop Windows to the Universe

The Universe at Your Fingertips 2.0 DVD from the Astronomical Society of the Pacific is in our online store, filled with Earth and space science resources.
Biological particles--bacteria, pollen, fungi--act as nuclei for formation of ice in clouds
Click on image for full size
Image Courtesy of the National Center for Atmospheric Research

Scientists Make First Direct Observations of Biological Particles in High-Altitude Clouds
News story originally written on May 17, 2009

A team of atmospheric chemists hasmoved closer to what's considered the "holy grail" of climate change science: the first-ever direct detections of biological particles within ice clouds.

The team, led by Kimberly Prather and Kerri Pratt of the University of California at San Diego, Scripps Institution of Oceanography, sampled water droplet and ice crystal residues at high speeds while flying through clouds in the skies over Wyoming.

Analysis of the ice crystals revealed that the particles that started their growth were made up almost entirely of either dust or biological material such as bacteria, fungal spores and plant material.

While it has long been known that microorganisms become airborne and travel great distances, this study is the first to yield direct data on how they work to influence cloud formation.

Results of the Ice in Clouds Experiment - Layer Clouds (ICE-L), funded by the National Science Foundation (NSF), appear May 17 in the advance online edition of the journal Nature Geoscience.

"If we understand the sources of the particles that nucleate clouds, and their relative abundance, we can determine their impact on climate," said Pratt, lead author of the paper.

The effects of tiny airborne particles called aerosols on cloud formation have been some of the most difficult aspects of weather and climate for scientists to understand.

In climate change science, which derives many of its projections from computer simulations of climate phenomena, the interactions between aerosols and clouds represent what scientists consider the greatest uncertainty in modeling predictions for the future.

"By sampling clouds in real time from an aircraft, these investigators were able to get information about ice particles in clouds at an unprecedented level of detail," said Anne-Marie Schmoltner of NSF's Division of Atmospheric Sciences, which funded the research.

"By determining the chemical composition of the very cores of individual ice particles, they discovered that both mineral dust and, surprisingly, biological particles play a major role in the formation of clouds."

Aerosols, ranging from dust, soot, and sea salt to organic materials, some of which travel thousands of miles, form the skeletons of clouds.

Around these nuclei, water and ice in the atmosphere condense and grow, leading to precipitation. Scientists are trying to understand how thenuclei form, as clouds play a critical role by both cooling the atmosphere and affecting regional precipitation processes.

The ICE-L team mounted a mass spectrometer onto a C-130 aircraft operated by the National Center for Atmospheric Research (NCAR) in Boulder, Colo., and made a series of flights through a type of cloud known as a wave cloud.

The researchers performed in-situ measurements of cloud ice crystal residues and found that half were mineral dust and about a third were made up of inorganic ions mixed with nitrogen, phosphorus and carbon--the signature elements of biological matter.

The second-by-second speed of the analysis allowed the researchers to make distinctions between water droplets and ice particles. Ice nuclei are rarer than droplet nuclei.

The team demonstrated that both dust and biological material indeed form the nucleiof these ice particles, something that previously could only be simulated in laboratory experiments.

"This has really been kind of a holy grail measurement for us," said Prather.

"Understanding which particles form ice nuclei, and which have extremely low concentrations and are inherently difficult to measure, means you can begin to understand processes that result in precipitation. Any new piece of information you can get is critical."

The findings suggest that the biological particles that get swept up in dust storms help to induce the formation of cloud ice, and that their region of origin makes a difference. Evidence is increasingly suggesting that dust transported from Asia could be influencing precipitation in North America, for example.

Researchers hope to use the ICE-L data to design future studies timed to events when such particles may play a bigger role in triggering rain or snowfall.

The research was also supported by NCAR.

Paper co-authors include Paul DeMott and Anthony Prenni from Colorado State University, Jeffrey French and Zhien Wang of the University of Wyoming, Douglas Westphal of the Naval Research Laboratory in Monterey, Calif., Andrew Heymsfield of the National Center for Atmospheric Research, and Cynthia Twohy of Oregon State University.

Text above is courtesy of the National Science Foundation

Last modified July 7, 2009 by Becca Hatheway.

Shop Windows to the Universe Science Store!

Our online store includes issues of NESTA's quarterly journal, The Earth Scientist, full of classroom activities on different topics in Earth and space science, as well as books on science education!

Windows to the Universe Community

News

Opportunities

You might also be interested in:

Traveling Nitrogen Classroom Activity Kit

Check out our online store - minerals, fossils, books, activities, jewelry, and household items!...more

Aerosols: Tiny Particulates in the Air

Aerosols, also called particulates, are tiny bits of solid or liquid suspended in the air. Some aerosols are so small that they are made only of a few molecules so small that they are invisible because...more

How Clouds Form

A cloud is composed of tiny water droplets or ice crystals that are suspended in the air. A series of processes have to happen in order for these water droplets or ice crystals to form into clouds in the...more

Modeling the Future of Climate Change

Predicting how our climate will change in the next century or beyond requires tools for assessing how planet responds to change. Global climate models, which are run on some of the world's fastest supercomputers,...more

Condensation

Condensation is the process by which water changes its state from a vapor or gas to a liquid. Condensation is responsible for the formation of clouds. Common examples of condensation are: dew forming on...more

Element (Chemical Element)

An element (also called a "chemical element") is a substance made up entirely of atoms having the same atomic number; that is, all of the atoms have the same number of protons. Hydrogen, helium, oxygen,...more

Rain

Rain is precipitation that falls to the Earth in drops of 5mm or greater in diameter according to the US National Weather Service. Virga is rain that evaporates before reaching the ground. Raindrops form...more

Triggers of Volcanic Eruptions in Oregon's Mount Hood Investigated

A new study has found that a mixing of two different types of magma is the key to the historic eruptions of Mount Hood, Oregon's tallest mountain, and that eruptions often happen in a relatively short...more

Windows to the Universe, a project of the National Earth Science Teachers Association, is sponsored in part is sponsored in part through grants from federal agencies (NASA and NOAA), and partnerships with affiliated organizations, including the American Geophysical Union, the Howard Hughes Medical Institute, the Earth System Information Partnership, the American Meteorological Society, the National Center for Science Education, and TERC. The American Geophysical Union and the American Geosciences Institute are Windows to the Universe Founding Partners. NESTA welcomes new Institutional Affiliates in support of our ongoing programs, as well as collaborations on new projects. Contact NESTA for more information. NASA ESIP NCSE HHMI AGU AGI AMS NOAA