Shop Windows to the Universe

Check out the fun Earth science related bumper stickers in our online store! Express yourself!

Climate and Global Change

Warm near the equator and cold at the poles, our planet is able to support a variety of living things because of its diverse regional climates. The average of all these regions makes up Earth's global climate. Climate has cooled and warmed throughout Earth history for various reasons. Rapid warming like we see today is unusual in the history of our planet. The scientific consensus is that climate is warming as a result of the addition of heat-trapping greenhouse gases which are increasing dramatically in the atmosphere as a result of human activities.

Earth's global average surface <a
  href="/earth/climate/ipcc_feb2007.html">warming</a> relative to the
  1980-1999 average over the past 100 years is shown in the black line.
  Predictions of the amount of warming in the future are shown by the red,
  green, and purple lines. These predictions, developed with <a
  href="/earth/climate/cli_models.html">computer models</a>, make different
  assumptions about how many <a
  href="/earth/climate/cli_greengas.html">greenhouse gases</a> we release into the
  atmosphere in the future.<p><small><em> A Windows to the Universe image based on a graph from the IPCC 4th Assessment Report</em></small></p><a href="/earth/climate/cli_define.html">Regional climate</a> is
the average weather pattern in a place over more than thirty years,
including the variations in
<a href="/earth/climate/cli_seasons.html">seasons</a>.
The climate of a region depends on many factors including sunlight,
altitude, topography, and proximity to oceans. Since the equatorial regions
receive more sunlight than the poles, climate varies with
<a href="/earth/climate/cli_latitude.html">latitude</a>.
This image shows how sea surface temperatures change at different latitudes.<p><small><em>Image courtesy of NOAA.  Public domain.</em></small></p>Many forms of air pollution are human-made. Industrial plants, power plants
and vehicles with internal combustion engines produce <a href="/earth/climate/nitrogen_airpollution.html">nitrogen
oxides</a>,
<a href="/earth/Atmosphere/vocs.html">VOCs</a>,
<a href="/physical_science/chemistry/carbon_monoxide.html">carbon monoxide</a>,
<a href="/physical_science/chemistry/carbon_dioxide.html">carbon dioxide</a>,
<a href="/physical_science/chemistry/sulfur_oxides.html">sulfur dioxide</a> and
<a href="/earth/Atmosphere/particulates.html">particulates</a>.
Some of these gases are <a href="/earth/climate/cli_greengas.html">greenhouse
gases</a>,
meaning that they retain heat in the Earth's atmosphere, due to the Earth's
<a href="/earth/climate/earth_greenhouse.html">greenhouse effect</a>.<p><small><em>Image copyright UCAR</em></small></p>How did life evolve on <a href="/earth/earth.html">Earth</a> during the <a href="/earth/past/Archean.html">Archean</a>, when the <a href="/sun/sun.html">Sun</a> was about 25% weaker than today?  The Earth should have been <a href="/earth/polar/cryosphere_glacier1.html">glaciated</a>, if <a href="/earth/climate/earth_greenhouse.html">greenhouse</a> gas concentration was the same as today.  <a href="http://www.manchester.ac.uk/aboutus/news/display/?id=10798">Researchers</a> studying the <a href="/physical_science/physics/atom_particle/isotope.html">isotopic</a> signatures of Earth's early atmosphere in <a href="/earth/geology/rocks_intro.html">rocks</a> from Northern Australia have ruled out high levels of <a href="/physical_science/chemistry/nitrogen_molecular.html">nitrogen</a> as a possible way to increase warming from <a href="/earth/Atmosphere/overview.html">atmospheric</a> <a href="/physical_science/chemistry/carbon_dioxide.html">carbon dioxide</a>.<p><small><em>Image courtesy of Manchester University</em></small></p><b><i>Looking for online resources to use in support of climate change education?</i></b>  Our <a href="/teacher_resources/climate.html">Climate Change Educator Resources page</a> provides links to online content, classroom activities, interactives, and videos as well as resources provided by other leading organizations and agencies on this topic.  Our <a href="/teacher_resources/climate_change_course.html">Climate Change Course Content page</a> provides links to online content for a range of climate change associated topics.<p><small><em>Image courtesy of   Mila Zinkova, Creative Commons Attribution ShareAlike license</em></small></p>Greenlandís <a href="http://www.windows2universe.org/earth/polar/cryosphere_glacier1.html">ice sheet</a> saw a record <a href="http://www.windows2universe.org/headline_universe/olpa/greenland_10dec07.html">melt</a> in July 2012.  Scientists studying this event have found that this melting event was triggered by an influx of unusually warm air and amplified by the presence of a blanket of thin low-level <a href="http://www.windows2universe.org/earth/Atmosphere/cloud.html">clouds</a> which pushed temperatures up above freezing.  For more information see the <a href="http://www.news.wisc.edu/21638">press release</a> from the University of Wisconsin Madison.<p><small><em>Image courtesy of University of Wisconsin-Madison</em></small></p>

Windows to the Universe Community

News

Opportunities


Windows to the Universe, a project of the National Earth Science Teachers Association, is sponsored in part is sponsored in part through grants from federal agencies (NASA and NOAA), and partnerships with affiliated organizations, including the American Geophysical Union, the Howard Hughes Medical Institute, the Earth System Information Partnership, the American Meteorological Society, the National Center for Science Education, and TERC. The American Geophysical Union and the American Geosciences Institute are Windows to the Universe Founding Partners. NESTA welcomes new Institutional Affiliates in support of our ongoing programs, as well as collaborations on new projects. Contact NESTA for more information. NASA ESIP NCSE HHMI AGU AGI AMS NOAA